

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg Tel. (0761) 203-8126 Tel. (0761) 203-8125

Foundations of Query Languages Summer semester 2010 May 18, 2010

5. Exercise Set: Conjunctive Queries and Chase

Exercise 1

Consider the following database schema.

hasAirport(c_{-id}) fly(c_{-id1} , c_{-id2} ,dist) rail(c_{-id1} , c_{-id2} ,dist)

Specify the constraints below in First-order Logic and indicate if your specification is a tuple-generating dependency, equality-generating dependency, or none of both. In case of tuple-generating or equality-generating dependencies additionally compute their *body* and *head*.

- a) α_1 : If a city has an airport, then there is at least one flight departing from this city.
- b) α_2 : The distance of a rail connection functionally depends on the departure and destination station.
- c) α_3 : There is at least one flight and one train connection listed in the database.
- d) α_4 : Starting from Frankfurt, all cities with airport can be reached either by direct flight or by a flight with only one intermediate stop.
- e) α_5 : All pairs of cities with airport that have a direct train connection also have a direct flight connection.

Hint: In order to solve this exercise you may use tuple-generating dependencies that have an empty body.

Exercise 2

Consider the schema from the previous exercise, the constraint set $\Sigma := \{\alpha_1, \alpha_2, \alpha_3\}$ with

 $\begin{array}{l} \alpha_1 := \forall \ c_1, c_2, c_3, d_1, d_2 \ (\texttt{rail}(c_1, c_2, d_1), \ \texttt{rail}(c_2, c_3, d_2) \to \exists \ d_3 \ \texttt{rail}(c_1, c_3, d_3)) \\ \alpha_2 := \forall \ c_1, c_2, d_1, d_2 \ (\texttt{fly}(c_1, c_2, d_1) \land \texttt{fly}(c_2, c_1, d_2) \to d_1 = d_2) \\ \alpha_3 := \forall \ c_1, c_2, d_1 \ (\texttt{fly}(c_1, c_2, d_1) \to \exists \ d_2 \ \texttt{fly}(c_2, c_1, d_2)) \end{array}$

and the conjunctive query

 $Q: \quad \operatorname{ans}(C_3) \leftarrow \operatorname{rail}(\operatorname{Freiburg}, C_1, D_1), \operatorname{rail}(C_1, C_2, D_2), \operatorname{fly}(C_2, C_3, D_3).$

a) Describe the semantics of the constraints and the query informally.

b) Which constraints from Σ are satisfied by body(Q)? Does body(Q) satsify Σ ?

c) Chase query Q with Σ . Provide all intermediate results (= chase steps). Does it hold that $body(Q^{\Sigma}) \models \Sigma$?

Exercise 3

Consider the database schema with relations

Person(SSN,Name) Professor(SSN,Name) Course(CourseName,SSN) Enrolled(CourseName,Participant)

where **Person** stores persons including social security number and name, **Professor** stores professors including social security number and name, **Course** contains course names and the SSN of the lecturer, and **Enrolled** stores course inscriptions. Further let $\Sigma := \{\beta_1, \beta_2, \beta_3\}$ be the set of the following constraints.

 $\begin{array}{l} \beta_1 := \forall \ s,n \ (\texttt{Professor}(s,n) \to \texttt{Person}(s,n)) \\ \beta_2 := \forall \ c,s,n \ (\texttt{Course}(c,s) \land \texttt{Person}(s,n) \to \texttt{Professor}(s,n)) \\ \beta_3 := \forall \ c,s \ (\texttt{Course}(c,s) \to \exists \ p \ \texttt{Enrolled}(c,p)) \end{array}$

Further consider the Conjunctive Query

 $Q: \quad \operatorname{ans}(C,N) \leftarrow \operatorname{Professor}(S,N), \operatorname{Course}(C,S)$

a) Describe the constraints informally.

- b) Compute Q^{Σ} .
- c) Compute starting from Q^{Σ} the set of all minimal Σ -equivalent queries.

Exercise 4

Let E(src,dest) store the edge relation of a graph and let Q: $ans(X) \leftarrow E(X,Y)$. Find a tuple-generating dependency α such that the chase of Q with $\Sigma := \{\alpha\}$ does not terminate.

Exercise 5

Check if the constraint sets Σ_1 , Σ_2 , and Σ_3 are *acyclic*. Depict the relation graph and check if termination guarantees can be derived for the respective constraint set.

 $\Sigma_1 := \{ \forall c_1, c_2, c_3, d_1, d_2 \; (\texttt{rail}(c_1, c_2, d_1), \texttt{rail}(c_2, c_3, d_2) \to \exists d_3 \; \texttt{rail}(c_1, c_3, d_3)) \}$

$$\begin{split} \Sigma_2 &:= \{ \forall c_1, c_2, d_1, d_2 \; (\texttt{fly}(c_1, c_2, d_1) \land \texttt{fly}(c_2, c_1, d_2) \rightarrow d_1 = d_2), \\ \forall c_1, c_2 \; (\texttt{hasAirport}(c_1) \land \texttt{hasAirport}(c_2) \rightarrow \exists \; d \; \texttt{fly}(c_1, c_2, d)), \\ \forall \; c_1, c_2, d_1 \; (\texttt{fly}(c_1, c_2, d_1) \rightarrow \exists \; d_2 \; \texttt{rail}(c_1, c_2, d_2)) \; \} \end{split}$$

$$\Sigma_3 := \Sigma_2 \cup \{ \forall x_1, x_2, x_3, d_1, d_2 \; (\texttt{rail}(x_1, x_2, d_1) \land \texttt{fly}(x_2, x_3, d_2) \rightarrow \texttt{hasAirport}(x_2) \land \texttt{hasAirport}(x_3) \}$$

Exercise 6

An improvement of the Acyclicity condition is Weak Acyclicity. The latter is defined on top of positions inside relations rather than complete relations. For instance, the relation $fly(c_id1, c_id2, dist)$ has three positions, namely fly^1 (attribute c_id1), fly^2 (attribute c_id2), fly^3 (attribute dist). Basing upon the notion of positions, Weak Acyclicity is defined as follows.

Definition 1 Given a set of tuple-generating and equality-generating dependencies Σ , its dependency graph dep $(\Sigma) := (V, E)$ is the directed graph defined as follows. V is the set of positions that occur in the tuple-generating dependencies of Σ . There are two kind of edges in E. Add them as follows: for every tuple-generating dependency

$$\forall \overline{x}(\phi(\overline{x}) \to \exists \overline{y}\psi(\overline{x},\overline{y})) \in \Sigma$$

and for every x in \overline{x} that occurs in ψ and every occurrence of x in ϕ in position π_1

- for every occurrence of x in ψ in position π_2 , add an edge $\pi_1 \to \pi_2$ (if it does not already exist).
- for every existentially quantified variable y and for every occurrence of y in a position π_2 , add a special edge $\pi_1 \xrightarrow{*} \pi_2$ (if it does not already exist).

 Σ is called *weakly acyclic* if and only if dep(Σ) has no cycles through a special edge.

Like *acyclicity*, *weak acyclicity* guarantees chase termination for every database instance.

- a) Depict the dependency graphs of the constraint sets Σ_1 , Σ_2 , and Σ_3 from the previous exercise. Are these constraint sets *weakly acyclic*? Is it possible to derive termination guarantees?
- b) Find a unary constraint set over an edge relation E(src, dest) that is not weakly acyclic.

Due by: June 2, 2010 before the tutorial starts.